Thursday, January 30, 2020

Working at Mcdonalds Essay Example for Free

Working at Mcdonalds Essay In the essay, â€Å"Working at McDonald’s,† Amitai Etzioni talks about his belief that working, especially at fast food chain restaurants can be bad for teenagers. Working, for teenagers under some circumstances can be bad for them but sometimes its good depending on the daily schedule of whomever is working. If the teen is still in school, working is bound to affect their involvement and attendance in negative ways. Though it’s true that while working you gain on the job experience, Etzioni believes it can’t really help if it comes at the cost of education while teens think the opposite. Fast food jobs do have an advantage earning money while also learning how to manage the money they make. It boils down to whether or not risks outweigh the benefits when working jobs like this which all depends on the current situation of the teen. To begin, the Etzioni writes how he believes jobs don’t go well with keeping up schoolwork and can get in the way of attendance. This is the same for nearly all extracurricular activities most are after school so it’s likely to get in the way. When I was in high school I had a friend John who tried to juggle a job, schoolwork and a football altogether but in the end he chose to give up football because he couldn’t make it to any of the practices. The author also takes into account that if students don’t have enough time to study their grades will drop without question. It comes down to the decision of which activity to give up to make room for work. More than half the time students will abandon the sport to find more study time like in my friend John’s case. Second, the author addresses the problem that I think has two sides to the coin. He believes that jobs generally don’t give any training that would help outside of the work they would be currently doing. This is true because most of the skills taught in fast food restaurants are for the simple things like running the register or working the fryer. Many of the jobs themselves could be done as good or better by a nine-year-old because of how simple the work is. Most aspects of this type of job wouldn’t help anyone in the future much less a teenager. Once they no longer work there  anymore, the skill is useless unless they still plan on working in the same type of job. There are a couple of things that can be learned from a fast food job that might help with other jobs the future. If you’ve ever been to a McDonald’s or any other fast food restaurant and had a bad worker serving you, you might have gotten a little annoyed. Work ethic is very important at a fast food place or any workplace for that matter. In other jobs, if you are not quick and efficient, you might not make it very far in your work. Also, workers learn how to work with different types of people this helps them in later experiences in a work force. Getting an impatient customer is a good example, when presented with a problem like this it helps prepare you for other situations like it in the future. This is not always easy but will serve as great experience for jobs in the future. Lastly, Etzioni explains that working doesn’t teach teens how to manage their money. This however is where I disagree, the best thing about having a job as a teen is that you learn the value of a dollar from your own mistakes. Having money and working for that money helps teens to understand that money isn’t free and shouldn’t be wasted. When teenagers want to buy something they’ll simply go buy it only to find later that they could have gotten it at half price had they waited on a sale. Also teens will try to rent things they want from â€Å"pay later† businesses like rent a center instead of buying it when they have the money to do so just to learn that not only is it more expensive this way but if they miss a payment the rightful owners could repossess it at any time. Often times this could lead to debt, but if they are lucky their parents might help them out. â€Å"Students who worked at least 25 hours per week while in school, their unemployment rate four years later was half of the seniors who did work.† This means that most of those that began in fast food jobs stayed in that area of work or simply became unemployed. There are plenty of pros and cons to working at an early age, while it could interfere with school it can also help teens develop a good work ethic and learn from their mistakes. If they don’t get the chance to make these mistakes before they move away, the consequences could be alot more devastating. The question the author wants the reader to consider in all this is, can the risk worth the reward?

Wednesday, January 22, 2020

An Image of Truth :: Essays Papers

An Image of Truth Plato teaches that reality is to be found in universal â€Å"forms.† Images of objects are therefore pale imitations of reality: that is, at least twice removed from the truth. Nevertheless, Jane Austen in Pride and Prejudice suggests that the image of a person can offer true insights that the actual person might not. In her very first meeting with Mr. Darcy, Elizabeth is left â€Å"with no very cordial feelings towards him† and after spending â€Å"four days in the same house with him† she still â€Å"think[s] him very disagreeable† (9, 53).1 Even after Mr. Darcy has directly and blatantly declared his love for Elizabeth she cannot consider him favorably and exclaims â€Å"I have never desired your good opinion† (125). Just to walk with him in the park â€Å"seem[s] like willful ill‑nature or a voluntary penance† (120). However, Elizabeth’s feelings for Darcy change after she views the portrait of him at Pemberley. She d evelops a â€Å"more gentle sensation toward the original† after seeing the painting and may even consider Darcy’s â€Å"regard with a deeper sentiment of gratitude than it had ever raised before† (162). Elizabeth needs the indirect image of Darcy in this portrait to view the man himself more accurately than she can when she faces him in person. The painting offers her time to contemplate Darcy’s true character. Furthermore, the frozen image creates a distance from which Elizabeth may consider Darcy without the interference of her intense emotions. When Elizabeth is face to face with Darcy, she must engage him in conversation, but when she examines the portrait, she does not have to speak: she can look at the painting for â€Å"several moments†¦in earnest contemplation† and even â€Å"return to it again† before leaving (162). Socially, great importance is placed on witty dialogue and polite conversation. At the first ball, the newly arrived Mr. Darcy is criticized for his reserve; rather than extend himself to form new acquaintances, he speaks only â€Å"occasionally to [a lady] of his own party† (8). Yet by refraining from conventional conversation, Mr. Darcy is able to form sound opinions. When he â€Å"wish[es] to know more of [Elizabeth]† he first â€Å"attend[s] to her conversations with others† before directly engaging her in dialogue (17). He even advises Elizabeth to take her time in getting to know him, urging â€Å"I could wish, Miss Bennet, that you were not to sketch my character at the present moment†¦the performance would reflect no credit on either.

Tuesday, January 14, 2020

Ece Project

SECURITY SYSTEM USING RFID A PROJECT REPORT Submitted by ANISH ANTONY (080107117005) JISU JOHN ISAC (080107117039) KRISHNA PRABHA R(080107117055) KUNAL BHARDWAJ (080107117056) In partial fulfilment for the award of the degree of BACHELOR OF ENGINEERING in ELECTRONICS AND COMMUNICATION ENGINEERING PARK COLLEGE OF ENGINEERING AND TEKHNOLOGY, KANIYUR, COIMBATORE-641659. ANNA UNIVERSITY OF TECHNOLOGY COIMBATORE 641 047 APRIL 2012 ANNA UNIVERSITY OF TECHNOLOGY COIMBATORE-641047 BONAFIDE CERTIFICATECertified that this project report â€Å"SECURITY SYSTEM USING RFID† is the bonafide work of â€Å"ANISH ANTONY, JISU JOHN ISAC, KRISHNA PRABHA R, KUNAL BHARDWAJ† who carried out the project work under my supervision. SIGNATURESIGNATURE Mr. MARIA ANTONY M. E Mrs. K. MUTHULAKSHMI. M. E. (PhD) SUPERVISOR HEAD OF THE DEPARTMENT Department of Electronics and Department of Electronics andCommunication Engineering, Communication Engineering, Park College of Engineering Park College of En gineering and Technology, and Technology, Coimbatore – 641659. Coimbatore – 641659. INTERNAL EXAMINER EXTERNAL EXAMINER CONTENTS CHAPTER TITLE PAGE NO ABSTRACT 1. INTRODUCTION 2. OBJECTIVE 3. SYSTEM ANALYSIS 3. 1 Existing System 3. Proposed System 4. SYSTEM SPECIFICATION 4. 1Hardware requirements 4. 2 Software requirements 5. SYSTEM DESCRIPTION 5. 1 Software description 5. 2 Hardware description 6. BLOCK DIAGRAM 6. 1 block diagram description 7. MERITS 8. CONCLUSION 9. REFERENCES ABSTRACT RFID (Radio Frequency Identification) is the quintessential pervasive computing technology. The heart of the utility is that RFID makes gathering information about physical objects easy.Information about RFID tagged objects can be read through physical barriers, and from a distance. Our project utilized these RFID tags to improve the security system of a building by introducing a system that could read the RFID tagged smart cards that are placed in proximity to an antenna. Our project comes with option of finger print system, GSM system and camera system attached with the main RFID system. This help in making the security full proof and reduce the possibility of breaches. RFID devices have three primary elements: a chip, an antenna, and a reader.A fourth important part of any RFID system is the database where information about tagged smart card is stored. For wireless data transmission and networking between sensor nodes, the project uses ZigBee modules. The modules require minimal power and provide reliable delivery of data between devices with efficient security measures. This project is implemented in real time system. INTRODUCTION The major problem faced by organizations in security breach is related with doors without proper security system on them for their protection. Our project is going to solve these problems by using RFID technology.For wireless data transmission between tag and sensor nodes, the project uses ZigBee modules. Radio Frequency Identifica tion (RFID) is an automatic identification method, relying on storing and remotely retrieving data using devices called RFID tags or transponders. So the RFID is a wireless identification. Normally the RFID system comprises of two main parts: RFID Reader and RFID Tag. RFID Reader is an integrated or passive network which is used to interrogate information from RFID tag (contains antennas to enable them to receive and respond to radiofrequency queries from an RFID transceiver).The RFID Reader may consist of antenna, filters, modulator, demodulator, coupler and a micro processor. We try to enhance the security up to a very effective level so that there are minimum possibilities in the security breach. For this purpose we are introducing a multilevel security system which consists of finger print impression, camera and GSM module along with RFID system. The system also creates a log containing check-in and check-out of each user along with basic information of user. OBJECTIVEThe aim of the project is to design a system that have a small coverage area and can be use for authentication or identification purposes. â€Å"Security System Using RFID† is a system that uses RFID technology to maintain the security of the different rooms in same structure which can be monitored on real-time bases using the Database server (PC). This system prevents unauthorized entry in rooms. For this purpose we are introducing a multilevel security system which consists of finger print impression, camera and GSM module along with RFID system. This ensures the reliability of the system and makes it difficult to breach.SYSTEM ANALYSIS EXISTING SYSTEM In the existing system, Information is sent to and read from RFID tags by a reader using radio waves. In passive systems, which are the most common, an RFID reader transmits an energy field that â€Å"wakes up† the tag and provides the power for the tag to respond to the reader. Data collected from tags is then passed through co mmunication interfaces (cable or wireless) to host computer systems in the same manner that data scanned from bar code labels is captured and passed to computer systems for interpretation, storage, and action.The drawback in this system is the lack of security option available for the user. One can easily use others RFID tag to gain access in the desired place without their prior knowledge. This breach cannot be easily accounted as there is no record other then the RFID tag used which can mislead to undesirable situation. PROPOSED SYSTEM This system is of new kind in which finger print recognition system along with GSM and camera is newly added. In this system RFID along with ZigBee, microcontroller, biometric system, GSM, amplifier circuit, power supply, camera and database server (PC) is used.Different circuits work together to form an unreachable system so that the security can be enhanced to the maximum level possible. When RFID tag is sensed by the RFID receiver and finger prin t impression is given, the camera is activated which clicks the image of the user trying to access the system. This information is stored in the database along with time and date when the system was accessed and the GSM technology used in the system make sure that the concerned authority is notified about the activation of the system along with result. SYSTEM SPECIFICATION HARDWARE REQUIREMENTSMODULESCOMPONENTNAME OF THE IC Power supplyVoltage RegulatorsLM7805, L7812, MC7912 Miscellaneous componentRS23225 PIN PORT CameraUSB Type Biometric scanner Optical Processing unitPIC ControllerPIC16F877A Data TransmissionDual Driver/ReceiverMAX 232 RFID Zigbee TransceiverX-BEE GSM Modem- SOFTWARE REQUIREMENTS Visual basics 6. 0 (Front end Design) Mikro basic SOFTWARE DESCRIPTION Visual Basic (VB) is the third-generation event-driven programming language and integrated development environment (IDE) from Microsoft for its COM programming model. Visual Basic is relatively easy to learn and use.Vi sual Basic was derived from BASIC and enables the rapid application development (RAD) of graphical user interface (GUI) applications, access to databases using Data Access Objects, Remote Data Objects, or ActiveX Data Objects, and creation of ActiveX controls and objects. Scripting languages such as VBA and VBScript are syntactically similar to Visual Basic, but perform differently. A programmer can put together an application using the components provided with Visual Basic itself. Programs written in Visual Basic can also use the Windows API, but doing so requires external function declarations.Visual basic is used to provide a simple interface about the program between user and system software. This is also used for storing the data and act as database for the system. MIKRO BASIC MikroBasic is a powerful, feature rich development tool for PIC microcontrollers. It is designed to provide the customer with the easiest possible solution for developing applications for embedded systems , without compromising performance or control. Highly advanced IDE, broad set of hardware libraries, comprehensive documentation, and plenty of ready to run example programs should be more than enough to get you started in programming microcontrollers.FEATURES MikroBasic allows you to quickly develop and deploy complex applications: †¢Write your BASIC source code using the built-in Code Editor (Code and Parameter Assistants, Syntax Highlighting, Auto Correct, Code Templates, and more†¦) †¢Use the included mikroBasic libraries to dramatically speed up the development: data acquisition, memory, displays, conversions, communications†¦ Practically all P12, P16, and P18 chips are supported. †¢Monitor your program structure, variables, and functions in the Code Explorer. Generate commented, human-readable assembly, and standard HEX compatible with all programmers. †¢Inspect program flow and debug executable logic with the integrated Debugger. †¢Get detai led reports and graphs: RAM and ROM map, code statistics, assembly listing, calling tree, and more†¦ †¢We have provided plenty of examples for you to expand, develop, and use as building bricks in your projects. Copy them entirely if you deem fit – that’s why we included them with the compiler. HARDWARE DESCRIPTION RFID TAGS Tags also sometimes are called â€Å"transponders†. RFID tags can come in many forms and sizes.Some can be as small as a grain of rice. Data is stored in the IC and transmitted through the antenna to a reader. The two commonly used RFID Transponders [2] are Active (that do contain an internal battery power source that powers the tags chip) and passive (that does not have an internal power source, but are externally powered typical from the reader) RFID Transponders. RFID READER A reader (now more typically referred to as an RFID interrogator) is basically a radio frequency (RF) transmitter and receiver, controlled by a microprocess or or digital signal processor.The reader, using an attached antenna, captures data from tags, then passes the data to a computer for processing. The reader decodes the data encoded in the tag(s) integrated circuit (silicon chip) and the data is passed to the host computer for processing. WORKING OF RFID Information is sent to and read from RFID tags by a reader using radio waves. In passive systems, which are the most common, an RFID reader transmits an energy field that â€Å"wakes up† the tag and provides the power for the tag to respond to the reader.Data collected from tags is then passed through communication interfaces (cable or wireless) to host computer systems in the same manner that data scanned from bar code labels is captured and passed to computer systems for interpretation, storage, and action. FREQUENCIES OF RFID RFID deployments tend to use unlicensed frequencies for their obvious cost benefits. There are four commonly used frequencies: †¢ Low frequency (LF) 125/134. 2 KHz. †¢ High frequency (HF) 13. 56 MHz. †¢ Ultra high frequency (UHF) (including 869 and 915 MHz). Microwave (at 2450 MHz, a band familiar to ISPs). A tag's read range performance is usually considered the primary gauge of its suitability for a particular application. It is important to remember that not all applications require maximum range. Tags in the LF-HF band have a range of 1 to 18 inches, while passive UHF tags can reach up to 20 feet, and microwave tags can reach 1 to 6 feet. The ranges greatly depend upon the surface on which the tag is mounted. BLOCK DIAGRAM BIOMETRIC SYSTEM In today’s world, the need for effective security is evident.Without effective security, many everyday activities are compromised. Specific security concerns include: †¢Protecting computer systems, PDAs, mobile phones, Internet appliances and similar devices from unauthorized access or use †¢Protecting motor vehicles and other valuable items from unauthorize d access or use preventing theft and fraud in financial transactions, in particular electronic transactions, including credit card payments and payments via the Internet. †¢ Restricting access to workplaces, warehouses and secures areas, such as military installations, to authorized personnel. Screening access to public transportation, in particular air travel. †¢ Authenticating the identity of an individual in drivers’ licenses, health cards, ID cards, and similar administrative documents. A major factor in ensuring security is the unique identification of individuals, or the authentication that a person is who he or she claims to be. This must be done reliably, rapidly, non-intrusively and at reasonable cost. In the past, this has been done by methods such as security tokens (passports, badges, etc. ), secure knowledge (passwords PIN codes, signature, etc. or recognition by a guardian (doorkeeper). These traditional approaches are all limited with respect to the a bove criteria. A promising approach for the future is biometrics. Biometrics offers a convenient, reliable and low-cost means of identifying or authenticating individuals, and can be implemented in unsupervised and remote situations. Biometrics seeks to identify individuals uniquely by measuring certain physical and behavioural characteristics and extracting a sample (also called a sampled template or live template) from these measurements in a standard data format.This sample is compared with a template (also called an enrolled template or signature), based on the same characteristics, that has been established as the unique identity of that individual and stored in the security system. A close match between sample and template confirms the identity of the individual. Attention has been focused on a small number of physical characteristics that can identify individuals uniquely, notably voice, gait, face, iris and retina patterns, palm prints and fingerprints. (DNA is excluded from this list because DNA sampling is intrusive and slow. Work is proceeding to develop electronic recognition systems based on all of these. This article focuses on fingerprints as the most advanced, mature and well-developed option. Based on centuries of experience and extensive research, fingerprints are at present considered to be the most reliable biometric for uniquely identifying an individual. In spite of some recent legal challenges in the USA, they are still regarded as giving proof of identity beyond reasonable doubt in almost all cases. The majority of the biometric-based security systems in operation today are based on fingerprint recognition.Thumb Impression FINGERCHIP TECHNOLOGY Finger Chip IC for fingerprint image capture combines detection and data conversion circuitry in a single rectangular CMOS die. It captures the image of a fingerprint as the finger is swept vertically over the sensor window. It requires no external heat, light or radio source. FINGERCHIP SENSOR T he Finger Chip sensor comprises an array of 8 rows by 280 columns, giving 2240 temperature-sensitive pixels. An additional dummy column is used for calibration and frame identification. The pixel pitch of 50 _m by 50 _m provides a resolution of 500 dpi over an image zone of 0. mm by 14 mm. This is adequate to capture a frame of the central portion of a fingerprint at an acceptable image resolution. This resolution also complies with the Image Quality Specification (IQS) from the IAFIS (Integrated Automated Fingerprint Identification System) of the U. S. Federal Bureau of Investigation (FBI). The pixel clock is programmable at up to 2 MHz, giving an output of 1780 frames per second. This is more than adequate for a typical sweeping velocity. An image of the entire fingerprint is re-constructed from successive frames using software provided. Biometric sensor ZIGBEEZigBee is a low-cost, low-power, wireless mesh network standard. The low cost allows the technology to be widely deployed in wireless control and monitoring applications. Low power-usage allows longer life with smaller batteries. Mesh networking provides high reliability and more extensive range. The technology is intended to be simpler and less expensive than other WPANs such as Bluetooth. ZigBee chip vendors typically sell integrated radios and microcontrollers with between 60 KB and 256 KB flash memory. ZigBee operates in the industrial, scientific and medical (ISM) radio bands; 868 MHz in Europe, 915 MHz in the USA and Australia, and 2. GHz in most jurisdictions worldwide. Data transmission rates vary from 20 to 250 kilobits/second. The ZigBee network layer natively supports both star and tree typical networks, and generic mesh networks. Every network must have one coordinator device, tasked with its creation, the control of its parameters and basic maintenance. Within star networks, the coordinator must be the central node. Both trees and meshes allow the use of ZigBee routers to extend communicat ion at the network level. ZIGBEE STACK ZigBee builds upon the physical layer and medium access control defined in IEEE standard 802. 5. 4 (2003 version) for low-rate WPAN's. The specification goes on to complete the standard by adding four main components: network layer, application layer, ZigBee device objects (ZDO's) and manufacturer-defined application objects which allow for customization and favour total integration. Besides adding two high-level network layers to the underlying structure, the most significant improvement is the introduction of ZDO's. These are responsible for a number of tasks, which include keeping of device roles, management of requests to join a network, device discovery and security.ZigBee is not intended to support power line networking but to interface with it at least for smart metering and smart appliance purposes. Because ZigBee nodes can go from sleep to active mode in 30msec or less, the latency can be low and devices can be responsive, particularly compared to Bluetooth wake-up delays, which are typically around three seconds. Because ZigBee nodes can sleep most of the time, average power consumption can be low, resulting in long battery life. PIC MICRO CONTROLLER FEATURES OF PIC (16F877A) †¢High-performance RISC CPU †¢Only 35 single word instructions to learn Direct, indirect and relative addressing modes †¢Power-on Reset (POR) †¢Power-up Timer (PWRT) and †¢Oscillator Start-up Timer (OST) †¢Programmable code-protection †¢Low-power, high-speed CMOS FLASH/EEPROM technology †¢In-Circuit Debugging via two pins †¢Single 5V In-Circuit Serial Programming capability †¢Wide operating voltage range: 2. 0V to 5. 5V †¢Commercial and Industrial temperature ranges †¢Low-power consumption. PIC micro controller-16F877A High-performance RISC CPU: †¢Only 35 single–word instruction to learn Operating speed: †¢DC-20MHz clock input †¢DC-200ns instruction cyclePerip heral features: †¢Universal synchronous asynchronous receiver transmitter (USAT/SCI) with 9-bit address deduction. †¢Parallel slave port (PSP)-8 bits wide with external RD, WR and CS controls. PIN DETAIL FOR MICROCONTROLLER Analog features: †¢10-bit, up to 8-channel analog –to- digital converter (A/D) †¢Analog Comparator module with two analog comparators †¢Programmable on – chip voltage reference (VREF) module †¢Programmable input multiplexing from device inputs and internal voltage reference †¢Comparator outputs are externally accessible Special Micro controller Features: 100,000 erase/write cycle Enhanced Flash program memory typical †¢1,000,000 erase/write cycle Data EEPROM memory typical †¢Data EEPROM Retention > 40 years †¢Self-reprogram able under software control †¢Single-supply 5v In-Circuit Serial Programming Tm (ICSPTm) Via two pins †¢Watching Timer (WDT) with its own on-chip RC oscillator for relia ble operation †¢Programmable code protection †¢Power saving Sleep mode †¢Selectable oscillator options In-Circuit Debug (ICD) via two pins CMOS Technology: †¢Low power, high-speed Flash/EEPROM technology †¢Wide operating voltage range (2. 0v to 5. 5v) RS 232PC in general cannot directly communicate with peripherals that are available. The reason behind this is the difference in their working logic. PC generally works in positive logic. The microcontroller that actually acts as the peripheral here works in negative logic. It becomes important to change the logic between them when they communicate with each other. RS232 is very important for standard serial interfacing with PC where change of logic is achieved. PC communicates with peripherals through serial com1 or com2, which communicates the data in terms of pulse form as follows. GSM MODULERFID security system is based on GSM network technology for transmission of SMS from sender to receiver. SMS sending a nd receiving is used for ubiquitous access of information and allowing breach control at secured area. The system provide a sub-systems which gives us a control subsystem that enables the user to control area security remotely whereas the security alert subsystem provides the remote security monitoring. The main aspect of the security alert is to achieve detection on intrusion in the system and allow an automatic generation of SMS thus alerting the user against security risk.PC: This unit contains the software components such as the server and security System through which the area security can be controlled and monitored. GSM Modem: It is a hardware component that allows the capability to send and receive SMS to and from the system. The communication with the system takes place via RS232 serial port. Cell phone can be attached at the place of GSM hardware but it limits the hardware functionality such as sending or receiving of SMS. Mobile Device: Cellular phone containing SIM card has a specific number through which communication takes place.The device communicates with the GSM Modem via radio frequency. Mobile user transmits SMS using GSM technology. GSM Modem: GSM modem is a plug and play device and is attached to the PC which then communicates with the PC via RS232 port. GSM modem is a bridge responsible for enabling/ disabling of SMS capability. Cell Phone: Mobile device communicates with the GSM Modem via radio waves. The mode of communication is wireless and mechanism works on the GSM technology. Cell phone has a SIM card and a GSM subscription. This cell phone number is configured on the system.User transmits instructions via SMS and the system takes action against those instructions. WORKING OF GSM MODULE GSM hardware tests are run in order to check the hardware support. The system will call GSM modem and it will get activated. After activation the Modem will check for hardware support. If the hardware is missing or some other hardware problem there w ill be error, resulting in communication failure and the application will be terminated. If hardware responds then the serial port will be opened for communication and GSM hardware will allow transmission of SMS.The system will then connect and after connection establishment the system will be able to detect intrusion and will alert user about the breach and similarly the system will update status of appliances by receiving SMS from the pre-defined cell number. SMS will be silently ignored if cell number is unauthorized. The system uses GSM technology thus providing ubiquitous access to the system for security and automated appliance control. Therefore this paper proposes a system that allows user to be control and provide security on detection of intrusion via SMS using GSM technology.POWER SUPPLY Power supply is the basic unit that provides corresponding operating voltage to each circuit. In this 12V power supply is used in the project. 7805 represents the IC which works on the op erating voltage of +5V. 7905 represents the IC works on the operating voltage of -5V. 7812 represents the IC which works on the operating voltage of +12V. 7912 represents the IC works on the operating voltage of -12V. BLOCK DIAGRAM Power supply unit consists of following units i) Step down transformer ii) Rectifier unit iii) Input filter iv) Regulator unit v) Output filter STEPDOWN TRANSFORMERUsing step down uses it to step down the main supply voltage transformer. It consists of primary and secondary coils. The output from the Secondary coil is also AC waveforms we have to convert AC voltage into DC voltage by using Rectifier Unit. RECTIFIER UNIT We have to convert AC voltage into DC voltage by using rectifier. Bridge Rectifier is used to convert into DC voltage. This output voltage of the rectifier is in rippled forms we have to remove the ripples from DC voltage. INPUT FILTER Capacitor acts as filter. The principle of the capacitor is charging and discharging.It charges in positi ve half cycle of the AC voltage and it will Discharge in negative half cycles, it allows only AC voltage and doesn’t allow the DC voltage. This filter is fixed before the regulator. REGULATOR UNIT Regulator regulates the output voltage constant depends upon the regulator. it classifieds as follows i) Positive regulator 1—> input pin 2—> ground pin 3—> output pin It regulates the positive voltage. ii) Negative regulator 1—> ground pin 2—> input pin 3—> output pin It regulates the negative voltage. OUTPUT FILTER Capacitor acts as filter.The principle of the capacitor is charging and Discharging. it charges in positive half cycle of the AC voltage and it will Discharge in negative half cycles, it allows only AC voltage and doesn’t allow the DC voltage. This fiter is fixed after the regulator. MERITS It is an advanced technology used for security purpose The main advantage is that its easy to use Comparing to all other technology i t has high memory capacity The size of the RFID is small, therefore its compact CONCLUSION AND FUTURE IMPLEMENTATION RFID is one of the best technology used for barcode system , tags and transfer information.RFID adorns the management with a new idea and usher for a bright future. In the near future the RFID tag system will be replaced with NFC(near field communication) because of its high sensitivity Due to its customizable feature and continuing improvement the library communities are beginning to get involved in its development REFERENCES www. microchip. com www. dallas. com www. gsmfavorites. com http://www. shepherdcentre. com. au/ www. myprojects. com SECURITY SYSTEM USING RFID A PROJECT REPORT Submitted by ANISH ANTONY (080107117005) JISU JOHN ISAC (080107117039)KRISHNA PRABHA R(080107117055) KUNAL BHARDWAJ (080107117056) In partial fulfilment for the award of the degree of BACHELOR OF ENGINEERING in ELECTRONICS AND COMMUNICATION ENGINEERING PARK COLLEGE OF ENGINEERING AND TE KHNOLOGY, KANIYUR, COIMBATORE-641659. ANNA UNIVERSITY OF TECHNOLOGY COIMBATORE 641 047 APRIL 2012 ANNA UNIVERSITY OF TECHNOLOGY COIMBATORE-641047 BONAFIDE CERTIFICATE Certified that this project report â€Å"SECURITY SYSTEM USING RFID† is the bonafide work of â€Å"ANISH ANTONY, JISU JOHN ISAC, KRISHNA PRABHA R, KUNAL BHARDWAJ† who carried out the project work under my supervision.SIGNATURESIGNATURE Mr. MARIA ANTONY M. E Mrs. K. MUTHULAKSHMI. M. E. (PhD) SUPERVISOR HEAD OF THE DEPARTMENT Department of Electronics and Department of Electronics and Communication Engineering, Communication Engineering, Park College of Engineering Park College of Engineering and Technology, and Technology, Coimbatore – 641659. Coimbatore – 641659. INTERNAL EXAMINER EXTERNAL EXAMINERCONTENTS CHAPTER TITLE PAGE NO ABSTRACT 1. INTRODUCTION 2. OBJECTIVE 3. SYSTEM ANALYSIS 3. 1 Existing System 3. 2 Proposed System 4. SYSTEM SPECIFICATION 4. 1Hardware requirements 4. 2 Software req uirements 5. SYSTEM DESCRIPTION 5. 1 Software description 5. Hardware description 6. BLOCK DIAGRAM 6. 1 block diagram description 7. MERITS 8. CONCLUSION 9. REFERENCES ABSTRACT RFID (Radio Frequency Identification) is the quintessential pervasive computing technology. The heart of the utility is that RFID makes gathering information about physical objects easy. Information about RFID tagged objects can be read through physical barriers, and from a distance. Our project utilized these RFID tags to improve the security system of a building by introducing a system that could read the RFID tagged smart cards that are placed in proximity to an antenna.Our project comes with option of finger print system, GSM system and camera system attached with the main RFID system. This help in making the security full proof and reduce the possibility of breaches. RFID devices have three primary elements: a chip, an antenna, and a reader. A fourth important part of any RFID system is the database wher e information about tagged smart card is stored. For wireless data transmission and networking between sensor nodes, the project uses ZigBee modules. The modules require minimal power and provide reliable delivery of data between devices with efficient security measures.This project is implemented in real time system. INTRODUCTION The major problem faced by organizations in security breach is related with doors without proper security system on them for their protection. Our project is going to solve these problems by using RFID technology. For wireless data transmission between tag and sensor nodes, the project uses ZigBee modules. Radio Frequency Identification (RFID) is an automatic identification method, relying on storing and remotely retrieving data using devices called RFID tags or transponders.So the RFID is a wireless identification. Normally the RFID system comprises of two main parts: RFID Reader and RFID Tag. RFID Reader is an integrated or passive network which is used to interrogate information from RFID tag (contains antennas to enable them to receive and respond to radiofrequency queries from an RFID transceiver). The RFID Reader may consist of antenna, filters, modulator, demodulator, coupler and a micro processor. We try to enhance the security up to a very effective level so that there are minimum possibilities in the security breach.For this purpose we are introducing a multilevel security system which consists of finger print impression, camera and GSM module along with RFID system. The system also creates a log containing check-in and check-out of each user along with basic information of user. OBJECTIVE The aim of the project is to design a system that have a small coverage area and can be use for authentication or identification purposes. â€Å"Security System Using RFID† is a system that uses RFID technology to maintain the security of the different rooms in same structure which can be monitored on real-time bases using the Data base server (PC).This system prevents unauthorized entry in rooms. For this purpose we are introducing a multilevel security system which consists of finger print impression, camera and GSM module along with RFID system. This ensures the reliability of the system and makes it difficult to breach. SYSTEM ANALYSIS EXISTING SYSTEM In the existing system, Information is sent to and read from RFID tags by a reader using radio waves. In passive systems, which are the most common, an RFID reader transmits an energy field that â€Å"wakes up† the tag and provides the power for the tag to respond to the reader.Data collected from tags is then passed through communication interfaces (cable or wireless) to host computer systems in the same manner that data scanned from bar code labels is captured and passed to computer systems for interpretation, storage, and action. The drawback in this system is the lack of security option available for the user. One can easily use others RFID tag to gain access in the desired place without their prior knowledge. This breach cannot be easily accounted as there is no record other then the RFID tag used which can mislead to undesirable situation.PROPOSED SYSTEM This system is of new kind in which finger print recognition system along with GSM and camera is newly added. In this system RFID along with ZigBee, microcontroller, biometric system, GSM, amplifier circuit, power supply, camera and database server (PC) is used. Different circuits work together to form an unreachable system so that the security can be enhanced to the maximum level possible. When RFID tag is sensed by the RFID receiver and finger print impression is given, the camera is activated which clicks the image of the user trying to access the system.This information is stored in the database along with time and date when the system was accessed and the GSM technology used in the system make sure that the concerned authority is notified about the activation of the sy stem along with result. SYSTEM SPECIFICATION HARDWARE REQUIREMENTS MODULESCOMPONENTNAME OF THE IC Power supplyVoltage RegulatorsLM7805, L7812, MC7912 Miscellaneous componentRS23225 PIN PORT CameraUSB Type Biometric scanner Optical Processing unitPIC ControllerPIC16F877A Data TransmissionDual Driver/ReceiverMAX 232 RFID Zigbee TransceiverX-BEE GSM Modem-SOFTWARE REQUIREMENTS Visual basics 6. 0 (Front end Design) Mikro basic SOFTWARE DESCRIPTION Visual Basic (VB) is the third-generation event-driven programming language and integrated development environment (IDE) from Microsoft for its COM programming model. Visual Basic is relatively easy to learn and use. Visual Basic was derived from BASIC and enables the rapid application development (RAD) of graphical user interface (GUI) applications, access to databases using Data Access Objects, Remote Data Objects, or ActiveX Data Objects, and creation of ActiveX controls and objects.Scripting languages such as VBA and VBScript are syntactic ally similar to Visual Basic, but perform differently. A programmer can put together an application using the components provided with Visual Basic itself. Programs written in Visual Basic can also use the Windows API, but doing so requires external function declarations. Visual basic is used to provide a simple interface about the program between user and system software. This is also used for storing the data and act as database for the system.MIKRO BASIC MikroBasic is a powerful, feature rich development tool for PIC microcontrollers. It is designed to provide the customer with the easiest possible solution for developing applications for embedded systems, without compromising performance or control. Highly advanced IDE, broad set of hardware libraries, comprehensive documentation, and plenty of ready to run example programs should be more than enough to get you started in programming microcontrollers. FEATURESMikroBasic allows you to quickly develop and deploy complex applicatio ns: †¢Write your BASIC source code using the built-in Code Editor (Code and Parameter Assistants, Syntax Highlighting, Auto Correct, Code Templates, and more†¦) †¢Use the included mikroBasic libraries to dramatically speed up the development: data acquisition, memory, displays, conversions, communications†¦ Practically all P12, P16, and P18 chips are supported. †¢Monitor your program structure, variables, and functions in the Code Explorer. †¢Generate commented, human-readable assembly, and standard HEX compatible with all programmers. Inspect program flow and debug executable logic with the integrated Debugger. †¢Get detailed reports and graphs: RAM and ROM map, code statistics, assembly listing, calling tree, and more†¦ †¢We have provided plenty of examples for you to expand, develop, and use as building bricks in your projects. Copy them entirely if you deem fit – that’s why we included them with the compiler. HARDWARE DE SCRIPTION RFID TAGS Tags also sometimes are called â€Å"transponders†. RFID tags can come in many forms and sizes. Some can be as small as a grain of rice.Data is stored in the IC and transmitted through the antenna to a reader. The two commonly used RFID Transponders [2] are Active (that do contain an internal battery power source that powers the tags chip) and passive (that does not have an internal power source, but are externally powered typical from the reader) RFID Transponders. RFID READER A reader (now more typically referred to as an RFID interrogator) is basically a radio frequency (RF) transmitter and receiver, controlled by a microprocessor or digital signal processor.The reader, using an attached antenna, captures data from tags, then passes the data to a computer for processing. The reader decodes the data encoded in the tag(s) integrated circuit (silicon chip) and the data is passed to the host computer for processing. WORKING OF RFID Information is sent to an d read from RFID tags by a reader using radio waves. In passive systems, which are the most common, an RFID reader transmits an energy field that â€Å"wakes up† the tag and provides the power for the tag to respond to the reader.Data collected from tags is then passed through communication interfaces (cable or wireless) to host computer systems in the same manner that data scanned from bar code labels is captured and passed to computer systems for interpretation, storage, and action. FREQUENCIES OF RFID RFID deployments tend to use unlicensed frequencies for their obvious cost benefits. There are four commonly used frequencies: †¢ Low frequency (LF) 125/134. 2 KHz. †¢ High frequency (HF) 13. 56 MHz. †¢ Ultra high frequency (UHF) (including 869 and 915 MHz). †¢ Microwave (at 2450 MHz, a band familiar to ISPs).A tag's read range performance is usually considered the primary gauge of its suitability for a particular application. It is important to remember t hat not all applications require maximum range. Tags in the LF-HF band have a range of 1 to 18 inches, while passive UHF tags can reach up to 20 feet, and microwave tags can reach 1 to 6 feet. The ranges greatly depend upon the surface on which the tag is mounted. BLOCK DIAGRAM BIOMETRIC SYSTEM In today’s world, the need for effective security is evident. Without effective security, many everyday activities are compromised.Specific security concerns include: †¢Protecting computer systems, PDAs, mobile phones, Internet appliances and similar devices from unauthorized access or use †¢Protecting motor vehicles and other valuable items from unauthorized access or use preventing theft and fraud in financial transactions, in particular electronic transactions, including credit card payments and payments via the Internet. †¢ Restricting access to workplaces, warehouses and secures areas, such as military installations, to authorized personnel. †¢ Screening access to public transportation, in particular air travel. Authenticating the identity of an individual in drivers’ licenses, health cards, ID cards, and similar administrative documents. A major factor in ensuring security is the unique identification of individuals, or the authentication that a person is who he or she claims to be. This must be done reliably, rapidly, non-intrusively and at reasonable cost. In the past, this has been done by methods such as security tokens (passports, badges, etc. ), secure knowledge (passwords PIN codes, signature, etc. ) or recognition by a guardian (doorkeeper). These traditional approaches are all limited with respect to the above criteria.A promising approach for the future is biometrics. Biometrics offers a convenient, reliable and low-cost means of identifying or authenticating individuals, and can be implemented in unsupervised and remote situations. Biometrics seeks to identify individuals uniquely by measuring certain physical and behav ioural characteristics and extracting a sample (also called a sampled template or live template) from these measurements in a standard data format. This sample is compared with a template (also called an enrolled template or signature), based on the same characteristics, that has been established as he unique identity of that individual and stored in the security system. A close match between sample and template confirms the identity of the individual. Attention has been focused on a small number of physical characteristics that can identify individuals uniquely, notably voice, gait, face, iris and retina patterns, palm prints and fingerprints. (DNA is excluded from this list because DNA sampling is intrusive and slow. ) Work is proceeding to develop electronic recognition systems based on all of these. This article focuses on fingerprints as the most advanced, mature and well-developed option.Based on centuries of experience and extensive research, fingerprints are at present consi dered to be the most reliable biometric for uniquely identifying an individual. In spite of some recent legal challenges in the USA, they are still regarded as giving proof of identity beyond reasonable doubt in almost all cases. The majority of the biometric-based security systems in operation today are based on fingerprint recognition. Thumb Impression FINGERCHIP TECHNOLOGY Finger Chip IC for fingerprint image capture combines detection and data conversion circuitry in a single rectangular CMOS die.It captures the image of a fingerprint as the finger is swept vertically over the sensor window. It requires no external heat, light or radio source. FINGERCHIP SENSOR The Finger Chip sensor comprises an array of 8 rows by 280 columns, giving 2240 temperature-sensitive pixels. An additional dummy column is used for calibration and frame identification. The pixel pitch of 50 _m by 50 _m provides a resolution of 500 dpi over an image zone of 0. 4 mm by 14 mm. This is adequate to capture a frame of the central portion of a fingerprint at an acceptable image resolution.This resolution also complies with the Image Quality Specification (IQS) from the IAFIS (Integrated Automated Fingerprint Identification System) of the U. S. Federal Bureau of Investigation (FBI). The pixel clock is programmable at up to 2 MHz, giving an output of 1780 frames per second. This is more than adequate for a typical sweeping velocity. An image of the entire fingerprint is re-constructed from successive frames using software provided. Biometric sensor ZIGBEE ZigBee is a low-cost, low-power, wireless mesh network standard.The low cost allows the technology to be widely deployed in wireless control and monitoring applications. Low power-usage allows longer life with smaller batteries. Mesh networking provides high reliability and more extensive range. The technology is intended to be simpler and less expensive than other WPANs such as Bluetooth. ZigBee chip vendors typically sell integrated rad ios and microcontrollers with between 60 KB and 256 KB flash memory. ZigBee operates in the industrial, scientific and medical (ISM) radio bands; 868 MHz in Europe, 915 MHz in the USA and Australia, and 2. GHz in most jurisdictions worldwide. Data transmission rates vary from 20 to 250 kilobits/second. The ZigBee network layer natively supports both star and tree typical networks, and generic mesh networks. Every network must have one coordinator device, tasked with its creation, the control of its parameters and basic maintenance. Within star networks, the coordinator must be the central node. Both trees and meshes allow the use of ZigBee routers to extend communication at the network level. ZIGBEE STACK ZigBee builds upon the physical layer and medium access control defined in IEEE standard 802. 5. 4 (2003 version) for low-rate WPAN's. The specification goes on to complete the standard by adding four main components: network layer, application layer, ZigBee device objects (ZDO's) and manufacturer-defined application objects which allow for customization and favour total integration. Besides adding two high-level network layers to the underlying structure, the most significant improvement is the introduction of ZDO's. These are responsible for a number of tasks, which include keeping of device roles, management of requests to join a network, device discovery and security.ZigBee is not intended to support power line networking but to interface with it at least for smart metering and smart appliance purposes. Because ZigBee nodes can go from sleep to active mode in 30msec or less, the latency can be low and devices can be responsive, particularly compared to Bluetooth wake-up delays, which are typically around three seconds. Because ZigBee nodes can sleep most of the time, average power consumption can be low, resulting in long battery life. PIC MICRO CONTROLLER FEATURES OF PIC (16F877A) †¢High-performance RISC CPU †¢Only 35 single word instructions t o learn Direct, indirect and relative addressing modes †¢Power-on Reset (POR) †¢Power-up Timer (PWRT) and †¢Oscillator Start-up Timer (OST) †¢Programmable code-protection †¢Low-power, high-speed CMOS FLASH/EEPROM technology †¢In-Circuit Debugging via two pins †¢Single 5V In-Circuit Serial Programming capability †¢Wide operating voltage range: 2. 0V to 5. 5V †¢Commercial and Industrial temperature ranges †¢Low-power consumption. PIC micro controller-16F877A High-performance RISC CPU: †¢Only 35 single–word instruction to learn Operating speed: †¢DC-20MHz clock input †¢DC-200ns instruction cyclePeripheral features: †¢Universal synchronous asynchronous receiver transmitter (USAT/SCI) with 9-bit address deduction. †¢Parallel slave port (PSP)-8 bits wide with external RD, WR and CS controls. PIN DETAIL FOR MICROCONTROLLER Analog features: †¢10-bit, up to 8-channel analog –to- digital converter (A /D) †¢Analog Comparator module with two analog comparators †¢Programmable on – chip voltage reference (VREF) module †¢Programmable input multiplexing from device inputs and internal voltage reference †¢Comparator outputs are externally accessible Special Micro controller Features: 100,000 erase/write cycle Enhanced Flash program memory typical †¢1,000,000 erase/write cycle Data EEPROM memory typical †¢Data EEPROM Retention > 40 years †¢Self-reprogram able under software control †¢Single-supply 5v In-Circuit Serial Programming Tm (ICSPTm) Via two pins †¢Watching Timer (WDT) with its own on-chip RC oscillator for reliable operation †¢Programmable code protection †¢Power saving Sleep mode †¢Selectable oscillator options In-Circuit Debug (ICD) via two pins CMOS Technology: †¢Low power, high-speed Flash/EEPROM technology †¢Wide operating voltage range (2. 0v to 5. 5v) RS 232PC in general cannot directly communic ate with peripherals that are available. The reason behind this is the difference in their working logic. PC generally works in positive logic. The microcontroller that actually acts as the peripheral here works in negative logic. It becomes important to change the logic between them when they communicate with each other. RS232 is very important for standard serial interfacing with PC where change of logic is achieved. PC communicates with peripherals through serial com1 or com2, which communicates the data in terms of pulse form as follows. GSM MODULERFID security system is based on GSM network technology for transmission of SMS from sender to receiver. SMS sending and receiving is used for ubiquitous access of information and allowing breach control at secured area. The system provide a sub-systems which gives us a control subsystem that enables the user to control area security remotely whereas the security alert subsystem provides the remote security monitoring. The main aspect of the security alert is to achieve detection on intrusion in the system and allow an automatic generation of SMS thus alerting the user against security risk.PC: This unit contains the software components such as the server and security System through which the area security can be controlled and monitored. GSM Modem: It is a hardware component that allows the capability to send and receive SMS to and from the system. The communication with the system takes place via RS232 serial port. Cell phone can be attached at the place of GSM hardware but it limits the hardware functionality such as sending or receiving of SMS. Mobile Device: Cellular phone containing SIM card has a specific number through which communication takes place.The device communicates with the GSM Modem via radio frequency. Mobile user transmits SMS using GSM technology. GSM Modem: GSM modem is a plug and play device and is attached to the PC which then communicates with the PC via RS232 port. GSM modem is a bridge responsible for enabling/ disabling of SMS capability. Cell Phone: Mobile device communicates with the GSM Modem via radio waves. The mode of communication is wireless and mechanism works on the GSM technology. Cell phone has a SIM card and a GSM subscription. This cell phone number is configured on the system.User transmits instructions via SMS and the system takes action against those instructions. WORKING OF GSM MODULE GSM hardware tests are run in order to check the hardware support. The system will call GSM modem and it will get activated. After activation the Modem will check for hardware support. If the hardware is missing or some other hardware problem there will be error, resulting in communication failure and the application will be terminated. If hardware responds then the serial port will be opened for communication and GSM hardware will allow transmission of SMS.The system will then connect and after connection establishment the system will be able to detect intrusion a nd will alert user about the breach and similarly the system will update status of appliances by receiving SMS from the pre-defined cell number. SMS will be silently ignored if cell number is unauthorized. The system uses GSM technology thus providing ubiquitous access to the system for security and automated appliance control. Therefore this paper proposes a system that allows user to be control and provide security on detection of intrusion via SMS using GSM technology.POWER SUPPLY Power supply is the basic unit that provides corresponding operating voltage to each circuit. In this 12V power supply is used in the project. 7805 represents the IC which works on the operating voltage of +5V. 7905 represents the IC works on the operating voltage of -5V. 7812 represents the IC which works on the operating voltage of +12V. 7912 represents the IC works on the operating voltage of -12V. BLOCK DIAGRAM Power supply unit consists of following units i) Step down transformer ii) Rectifier unit iii) Input filter iv) Regulator unit v) Output filter STEPDOWN TRANSFORMERUsing step down uses it to step down the main supply voltage transformer. It consists of primary and secondary coils. The output from the Secondary coil is also AC waveforms we have to convert AC voltage into DC voltage by using Rectifier Unit. RECTIFIER UNIT We have to convert AC voltage into DC voltage by using rectifier. Bridge Rectifier is used to convert into DC voltage. This output voltage of the rectifier is in rippled forms we have to remove the ripples from DC voltage. INPUT FILTER Capacitor acts as filter. The principle of the capacitor is charging and discharging.It charges in positive half cycle of the AC voltage and it will Discharge in negative half cycles, it allows only AC voltage and doesn’t allow the DC voltage. This filter is fixed before the regulator. REGULATOR UNIT Regulator regulates the output voltage constant depends upon the regulator. it classifieds as follows i) Positive reg ulator 1—> input pin 2—> ground pin 3—> output pin It regulates the positive voltage. ii) Negative regulator 1—> ground pin 2—> input pin 3—> output pin It regulates the negative voltage. OUTPUT FILTER Capacitor acts as filter.The principle of the capacitor is charging and Discharging. it charges in positive half cycle of the AC voltage and it will Discharge in negative half cycles, it allows only AC voltage and doesn’t allow the DC voltage. This fiter is fixed after the regulator. MERITS It is an advanced technology used for security purpose The main advantage is that its easy to use Comparing to all other technology it has high memory capacity The size of the RFID is small, therefore its compact CONCLUSION AND FUTURE IMPLEMENTATION RFID is one of the best technology used for barcode system , tags and transfer information.RFID adorns the management with a new idea and usher for a bright future. In the near future the RFID tag system will be replaced with NFC(near field communication) because of its high sensitivity Due to its customizable feature and continuing improvement the library communities are beginning to get involved in its development REFERENCES www. microchip. com www. dallas. com www. gsmfavorites. com http://www. shepherdcentre. com. au/ www. myprojects. com SECURITY SYSTEM USING RFID A PROJECT REPORT Submitted by ANISH ANTONY (080107117005) JISU JOHN ISAC (080107117039)KRISHNA PRABHA R(080107117055) KUNAL BHARDWAJ (080107117056) In partial fulfilment for the award of the degree of BACHELOR OF ENGINEERING in ELECTRONICS AND COMMUNICATION ENGINEERING PARK COLLEGE OF ENGINEERING AND TEKHNOLOGY, KANIYUR, COIMBATORE-641659. ANNA UNIVERSITY OF TECHNOLOGY COIMBATORE 641 047 APRIL 2012 ANNA UNIVERSITY OF TECHNOLOGY COIMBATORE-641047 BONAFIDE CERTIFICATE Certified that this project report â€Å"SECURITY SYSTEM USING RFID† is the bonafide work of â€Å"ANISH ANTONY, JISU JOHN ISAC, KRISHNA PRABHA R, KUNAL BHARDWAJ† who carried out the project work under my supervision.SIGNATURESIGNATURE Mr. MARIA ANTONY M. E Mrs. K. MUTHULAKSHMI. M. E. (PhD) SUPERVISOR HEAD OF THE DEPARTMENT Department of Electronics and Department of Electronics and Communication Engineering, Communication Engineering, Park College of Engineering Park College of Engineering and Technology, and Technology, Coimbatore – 641659. Coimbatore – 641659. INTERNAL EXAMINER EXTERNAL EXAMINERCONTENTS CHAPTER TITLE PAGE NO ABSTRACT 1. INTRODUCTION 2. OBJECTIVE 3. SYSTEM ANALYSIS 3. 1 Existing System 3. 2 Proposed System 4. SYSTEM SPECIFICATION 4. 1Hardware requirements 4. 2 Software requirements 5. SYSTEM DESCRIPTION 5. 1 Software description 5. Hardware description 6. BLOCK DIAGRAM 6. 1 block diagram description 7. MERITS 8. CONCLUSION 9. REFERENCES ABSTRACT RFID (Radio Frequency Identification) is the quintessential pervasive computing technology. The heart of the utility is that RFID makes gatherin g information about physical objects easy. Information about RFID tagged objects can be read through physical barriers, and from a distance. Our project utilized these RFID tags to improve the security system of a building by introducing a system that could read the RFID tagged smart cards that are placed in proximity to an antenna.Our project comes with option of finger print system, GSM system and camera system attached with the main RFID system. This help in making the security full proof and reduce the possibility of breaches. RFID devices have three primary elements: a chip, an antenna, and a reader. A fourth important part of any RFID system is the database where information about tagged smart card is stored. For wireless data transmission and networking between sensor nodes, the project uses ZigBee modules. The modules require minimal power and provide reliable delivery of data between devices with efficient security measures.This project is implemented in real time system. I NTRODUCTION The major problem faced by organizations in security breach is related with doors without proper security system on them for their protection. Our project is going to solve these problems by using RFID technology. For wireless data transmission between tag and sensor nodes, the project uses ZigBee modules. Radio Frequency Identification (RFID) is an automatic identification method, relying on storing and remotely retrieving data using devices called RFID tags or transponders.So the RFID is a wireless identification. Normally the RFID system comprises of two main parts: RFID Reader and RFID Tag. RFID Reader is an integrated or passive network which is used to interrogate information from RFID tag (contains antennas to enable them to receive and respond to radiofrequency queries from an RFID transceiver). The RFID Reader may consist of antenna, filters, modulator, demodulator, coupler and a micro processor. We try to enhance the security up to a very effective level so tha t there are minimum possibilities in the security breach.For this purpose we are introducing a multilevel security system which consists of finger print impression, camera and GSM module along with RFID system. The system also creates a log containing check-in and check-out of each user along with basic information of user. OBJECTIVE The aim of the project is to design a system that have a small coverage area and can be use for authentication or identification purposes. â€Å"Security System Using RFID† is a system that uses RFID technology to maintain the security of the different rooms in same structure which can be monitored on real-time bases using the Database server (PC).This system prevents unauthorized entry in rooms. For this purpose we are introducing a multilevel security system which consists of finger print impression, camera and GSM module along with RFID system. This ensures the reliability of the system and makes it difficult to breach. SYSTEM ANALYSIS EXISTIN G SYSTEM In the existing system, Information is sent to and read from RFID tags by a reader using radio waves. In passive systems, which are the most common, an RFID reader transmits an energy field that â€Å"wakes up† the tag and provides the power for the tag to respond to the reader.Data collected from tags is then passed through communication interfaces (cable or wireless) to host computer systems in the same manner that data scanned from bar code labels is captured and passed to computer systems for interpretation, storage, and action. The drawback in this system is the lack of security option available for the user. One can easily use others RFID tag to gain access in the desired place without their prior knowledge. This breach cannot be easily accounted as there is no record other then the RFID tag used which can mislead to undesirable situation.PROPOSED SYSTEM This system is of new kind in which finger print recognition system along with GSM and camera is newly added . In this system RFID along with ZigBee, microcontroller, biometric system, GSM, amplifier circuit, power supply, camera and database server (PC) is used. Different circuits work together to form an unreachable system so that the security can be enhanced to the maximum level possible. When RFID tag is sensed by the RFID receiver and finger print impression is given, the camera is activated which clicks the image of the user trying to access the system.This information is stored in the database along with time and date when the system was accessed and the GSM technology used in the system make sure that the concerned authority is notified about the activation of the system along with result. SYSTEM SPECIFICATION HARDWARE REQUIREMENTS MODULESCOMPONENTNAME OF THE IC Power supplyVoltage RegulatorsLM7805, L7812, MC7912 Miscellaneous componentRS23225 PIN PORT CameraUSB Type Biometric scanner Optical Processing unitPIC ControllerPIC16F877A Data TransmissionDual Driver/ReceiverMAX 232 RFID Zigbee TransceiverX-BEE GSM Modem-SOFTWARE REQUIREMENTS Visual basics 6. 0 (Front end Design) Mikro basic SOFTWARE DESCRIPTION Visual Basic (VB) is the third-generation event-driven programming language and integrated development environment (IDE) from Microsoft for its COM programming model. Visual Basic is relatively easy to learn and use. Visual Basic was derived from BASIC and enables the rapid application development (RAD) of graphical user interface (GUI) applications, access to databases using Data Access Objects, Remote Data Objects, or ActiveX Data Objects, and creation of ActiveX controls and objects.Scripting languages such as VBA and VBScript are syntactically similar to Visual Basic, but perform differently. A programmer can put together an application using the components provided with Visual Basic itself. Programs written in Visual Basic can also use the Windows API, but doing so requires external function declarations. Visual basic is used to provide a simple interfa ce about the program between user and system software. This is also used for storing the data and act as database for the system.MIKRO BASIC MikroBasic is a powerful, feature rich development tool for PIC m

Monday, January 6, 2020

The Road to Bankruptcy of Detroit City Essays - 615 Words

The inevitable is no less a shock because it is inevitable ~ Jamaica Kincaid Founded in 1701 by nearly 100 French settlers, Pontchartrain du Detroit was not doomed to bankruptcy. Located near epicenters of trade including the Canadian Border and the -Detroit River and rich in resources Detroit, from a geographic sense, was a city established on lands destined to prosper. Turning into an industrial powerhouse in the 20th century, the city saw an enormous boom in both population and industrial prosperity with the growth of the iron stove, railroad car, and ship building industries. It wasn’t until auto manufacturing renaissance initiated with the founding of Henry Ford Co. in 1910 that Detroit began it’s nearly 100 year long descent†¦show more content†¦The first factor in Detroit’s collapse was the undeniable success of the auto industry. The expansion of the big three auto producers, Chrysler, Ford, and General Motors led the charge. In addition to dominating the auto industry, the big three were largely responsible for the succe ss of local business throughout Detroit. Direct suppliers towards the auto companies themselves, and the subsequent services provided to the auto workers and their families composed the majority of Detroit business. The rapid expansion of the auto industry resulted in the industry’s decentralization with the city limits of Detroit and caused the expansion of the outlying areas surround Detroit. The decentralization of industry had profound effects on the geography and on the population of the city. The movement of jobs out of the city accelerated the process of suburbanization, as autoworkers who could move followed their jobs. This trend is demonstrated by Census data, showing that following the creating of new auto plants outside the city of Detroit resulted in the total population dropping by nearly 300,0000 citizens by 1960. Following this decentralization, the auto industry suffering from international competition and rising oil prices, was unable to sustain the levels o f economic output seen in years prior; and as a result, became a less desirable place to live for both workers looking to relocate and current residents. This table illustrates theShow MoreRelatedMovie Analysis : Detropia Is A Documentary Directed By Heidi Ewing And Rachel Grady1001 Words   |  5 PagesDetropia is a documentary directed by Heidi Ewing and Rachel Grady that explores the decline of Detroit, Michigan. The film is to raise awareness of the city that used to flourish but is now struggling to support its citizens with the downfall of its automobile industry. Detropia was made in 2012 and highlights important stories and viewpoints of citizens still living in Detroit who are filled with hope for its future. I chose to review Detropia because it really corresponds with what we have beenRead MoreDevelopment of the world without religion1640 Words   |  7 Pagesand inexperienced individual. On the contrary, Professionals who plan out many different cities and different agglomerations throughout various parts of the world are the only ones who can succeed at creating these developments. Some of the categories involved with urban geography include the success and downfalls of cities and metropolises as a whole, suburbanization, and impacts on class. When we see cities collapse and metropolises collapse we are all of the sudden in shock and become a frightenedRead MoreWhat Was the Transportation Revolution, Why Was It Needed and What Did It Tie Together876 Words   |  4 Pagestransportation in America. The Transportation Revolution included greatly improved roads, the development of canals, and the invention of the steamboat and railroad. In 1800, there were only 23 cities with over 100,000 citizens by 1900 there were 135 cities with over 100,000 citizens. There were several types of cities: cities that focused on the textile industry, cities that produced whiskey and hemp, and other southern cities that produced agriculture crops. The Industrial Revolution is one of the majorRead MoreSample Letter For Wayne County Economic Development Corporation1614 Words   |  7 PagesI was informed. This would lead to what would be the most motivating and academic part of my summer internship. Getting to know hands on how individually ea ch community within Wayne County is lead in terms of city managers and directors economic development administrate their appointed city; along with the future developments that are going to spawn and change the state of Michigan and the global economy as a whole. I grew as a person more than I was ever could image when I was told I received theRead MoreBankrupt Or Billion Dollar Retirement Fund?1160 Words   |  5 Pagestook office in 2008. One of the first cities to feel the pinch was Detroit. From the very beginning there was talk and concern that Detroit would have to file bankruptcy and default on their retirement pensions. A person could then make a leap of logic that the fear of government entities going into bankruptcy would cause instability and chaos. One way congress could provide stability would be to make sure that the USPS would not be in the same situation as Detroit. To ensure that the USPS would neverRead MoreThe Economic Disaster Of Detroit1836 Words   |  8 PagesDetroit, Michigan once stood as the epitome of industrial American cities. In the mid 1990s Detroit had the highest income per capita and a booming automotive industry. During prohibition in the 1920s Detroit served as a major gateway for the importation of alcohol from Canada, whereby it thrived from this lucrative business. Also, around this same time the automotive industry was growing at a pace where jobs were begging to be filled, and the population of Detroit rose to nearly 2,000,000. ThereRead MorePuerto Rico And The United States1100 Words   |  5 Pageseconomy and politics is to grant Puerto Rico statehood, making the island the 51st state of America. Their declining economy was caused by the government and other agencies issuing municipal bonds. These bonds are used to build schools, highways, roads, sewer projects and among other things. Then the state (Puerto Rico) pays back a specified amount of interest and the return principal on a maturity date (â€Å"The Basics of Municioal Bonds†). Because Puerto Rico was spending more then what the islandRead MoreThe Regulations Of The Clean Air Act1235 Words   |  5 Pagespreviously emitted by more than a de minimis amount.† The modify Volkswagen cars met the standards in the laboratory, however on the road, their vehicles emit nitrogen oxides up to 40 times above the Clean Air Act parameters according to Benjamin Hulac in the scientific american website. Volkswagen strongly contributed all this years in contaminating the air of large cities, like New York and Atlanta that have high ranks of Asthma residents in the area and there is not much density in the air. The AsthmaRead MoreSwot of Gm1431 Words   |  6 PagesBook. General Motors invested in building vehicles that consumers were turning away from â€Å"Its product mix in the U.S., heavily weighted toward trucks, pickups, and SUVs, is on the wrong side of gas prices. ... It is inextricably entangled in the bankruptcy of its biggest supplier, Delphi. In that imbroglio, as in countless others, it is up against a formidable and sometimes militant union ... The company is even under investigation by the SEC for accounting sins, as yet unrevealed. (Carl H. TongRead MoreEconomic Restructuring And Revitalization Of Detroit Michigan Post World War II2729 Words   |  11 Pagesrestructuring and revitalization of Detroit Michigan post World War II until today. The purpose of this resear ch paper is to show the history of Detroit’s auto and manufacturing industry, in what ways it has changed in recent years, and how it has helped define the economy of Detroit and damaged it. This paper suggests that the deindustrialization of plants and industries and the depopulation of whites to the Suburbs have triggered the economic downfall of the Motor City. Some social issues such as race